

If: • آزمون ورودى دوره دكترى (نيمهمتمركز) - سال

حق حاب، تكثير و انتشار سؤالاتبه هر روش (الكترونيكى و...) بس از بركزارى آزمون، براى تمامى اشخخاص حقيقى و حقوقى تنها با مجوز اين ساز مان مجاز معباشد و با متخلفين برابر مقررات رفتار مىشود.

** داوطلب ترامى، عدم درج مشخصات و امضا در مندرجات جدول ذيل، بهمنزلهُ عدم حضور شما در جلسئ آزمون است.

اينجانب ... با آكاهارهٔ داوطلبى كامل، يكسانبودن شمارة صندلى خود را
 شده بر روى دفتر چهُ سؤالات و پائين ییاسخنامهام رام را تأييد مىنمايم.

امضا:

ا- ا¢
$\frac{r}{r \pi}\left(f^{\varphi}\right.$
$\frac{r}{r \pi}(r$
$\frac{-r}{r \pi}$ (r $\quad \frac{-r}{r \pi}()$

با توجه به معادلهُ انتگرالى \quad با

$$
\begin{aligned}
& \frac{r}{\pi^{r}}() \\
& \frac{r}{\pi^{r}}(r \\
& \frac{r}{\pi^{r}}(r \\
& \frac{r}{\pi^{r}}(\uparrow
\end{aligned}
$$

 g(x)= $\int_{-\infty}^{\infty} g(t) e^{-r i \pi x t} d t$

$$
-\pi^{r}\left(\varphi \quad-\uparrow \pi^{r}(r\right.
$$

$$
r \pi^{r}(r
$$

$r \pi(1$

$$
\begin{aligned}
& \text { ¢ } \\
& \frac{\pi}{1 \Lambda}\left(\varphi \quad \frac { \pi } { Y \mu } \left(\mu \quad \frac { \pi } { \mu \varphi } \left(\gamma \quad \frac{\pi}{\Delta \varphi}()\right.\right.\right.
\end{aligned}
$$

 (J. نمايش تابع بسل است.)

 باشد، (x,t) كدام است؟

$$
\begin{cases}x & 0 \leq x \leq t \\ \frac{t(1-x)}{1-t} & t<x \leq 1\end{cases}
$$

$$
\begin{cases}\frac{t(1-x)}{1-t} & 0 \leq x \leq t \\ x & t<x \leq 1\end{cases}
$$

$$
\begin{cases}t(1-x) & 0 \leq x \leq t \\ x & t<x \leq 1\end{cases}
$$

$$
\begin{cases}x & 0 \leq x \leq t \\ t(1-x) & t<x \leq 1\end{cases}
$$

 شعاع $\mathbf{~ a ~ ب ه ص و ر ت ~} \mathbf{~ ب ~}$ مقدار دماى صفحه درنقطهٔ ($\left.\frac{1}{r}, \frac{\pi}{r}\right)$ كدام است؟

$$
\begin{aligned}
& \frac{T}{r \pi} \sum_{\mathrm{k}=0}^{\infty} \frac{1}{(r \mathrm{k}+1) \mathrm{r}^{\mathrm{k}}}(r \\
& \frac{r T}{\pi} \sum_{\mathrm{k}=0}^{\infty} \frac{(-1)^{\mathrm{k}}}{(r \mathrm{k}+1) \mathrm{f}^{\mathrm{k}}}(1 \\
& \frac{\mathrm{T}}{\pi} \sum_{\mathrm{k}=0}^{\infty} \frac{(-1)^{\mathrm{k}}}{(\uparrow \mathrm{k}+1) \mathrm{f}^{\mathrm{k}}}(\uparrow \\
& \frac{T}{\pi} \sum_{k=0}^{\infty} \frac{1}{(r k+1){r^{k}}^{k}}(r
\end{aligned}
$$

$\begin{array}{rlr}\Delta & \sqrt{\Delta}(r & \frac{r}{\sqrt{\Delta}}(t) \\ \frac{1}{\sqrt{\Delta}}(1)\end{array}$

- - جواب معادلئ ديفرانسيل زير با شرايط اوليهٔ داده شده، كدام است؟

$$
\begin{cases}\frac{\partial^{r} \mathbf{w}(\mathbf{x}, \mathbf{t})}{\partial \mathbf{x} \partial \mathbf{t}}+\frac{\partial \mathbf{w}(\mathbf{x}, \mathbf{t})}{\partial \mathbf{x}}+\sin t=0, \quad \mathbf{x}>0, \mathbf{t}>0 \\ \mathbf{w}(0, t)=0, & \mathbf{t} \geq 0 \\ \mathbf{w}(\mathbf{x}, 0)=\mathbf{x}, & \mathbf{x} \geq 0 \\ \frac{1}{r}\left(e^{-t}+\cos t+\sin t\right) x(r & \frac{1}{r}\left(r \mathrm{e}^{-t}+r \cos t-\sin t\right) x(1 \\ \frac{1}{r}\left(e^{-t}+\cos t-\sin t\right) x(r & \frac{1}{r}\left(r e^{-t}+r \cos t+\sin t\right) x(r\end{cases}
$$

($\mathbf{c}(\uparrow, \omega)-\mathbf{u}(\Gamma, \circ, \Delta)$

- (r
$1, \omega(T$
r (f)

$$
i+1(\uparrow \quad i-1(r \quad 1-i(r \quad i()
$$

re حاصل

$$
\|(\psi
$$

$19(\%$
1^(
if ()
(If

$$
\frac{\mathrm{e}^{-\varphi}-\mathrm{e}^{\psi}}{r \sin \mathrm{~h})}\left(\varphi \quad \frac { \mathrm { e } ^ { \psi } - \mathrm { e } ^ { - \psi } } { r \operatorname { s i n h }) } \left(r \quad \frac { - 1 } { r \mathrm { e } ^ { \varphi } \operatorname { s i n } \mathrm { h }) } \left(r \quad \frac{-1}{\left.r \mathrm{e}^{\psi} \sin \mathrm{h}\right)}()\right.\right.\right.
$$

() بيضى

$$
\begin{aligned}
& \text { حاصل } \\
& \pi\left(\mathrm{r}+\mathrm{e}^{-1}\right)\left(\mathrm { r } \quad \pi (1 + \mathrm { e } ^ { - 1 }) \left(r \quad \pi (\mathrm { r } - \mathrm { e } ^ { - 1 }) \left(\mathrm{r} \quad \pi\left(1-\mathrm{e}^{-1}\right)(\right.\right.\right.
\end{aligned}
$$

19- فضاى بين دو صفحهٔ تخت كه هر كدام با سرعت نيوتنى تراكم نایذير اشغال شدهاست. در حالت جريان دائمى درمورد تنش برشى وارد بر دو صفحه، چه اظههار

در فصل مشترى حركت دو لايهٔ سيال متفاوت، كداميكى از گز ينههاى زير صحيح نيست؟
() سرعت مماس بر فصل مشترك دو لايه بايد يكسان باشد. Y (Y) شيب سرعت در دو لائ سيال بايد يكسان باشد.

「

 ناحئ جريان اول برابر با a و عرض ناحئ جريأ دريان دوم برابر با b-a است. سطح بالايى سيال دوم در مجاورت محيط اطراف است. سرعت در فاصلهُ a از صفحه كدام است؟

$$
\begin{array}{r}
\frac{\rho_{1} g}{r \mu_{1}} \sin \theta\left(a^{r}+\frac{\rho_{r}}{\rho_{1}} a\right) \\
\frac{\rho_{r} g a}{r \mu_{r}} \sin \theta\left(a+\frac{\mu_{1}}{\mu_{r}}(a-b)\right) \\
\frac{\rho_{r} g}{r \mu_{r}} \sin \theta\left(b^{r}+\frac{\rho_{r}}{\rho_{1}}(b-a)\right) \\
\frac{\rho_{1} g a}{r \mu_{1}} \sin \theta\left(r \frac{\rho_{r}}{\rho_{1}}(a-b)-a\right)
\end{array}
$$

19- $\frac{\mathbf{u}}{\mathbf{U}_{\infty}}=\sin \left(\frac{\pi \mathbf{y}}{r \delta}\right)$ جريب بزنيم، در مورد نسبت ضخامت جابهجايى به ضخامت لايةٔ مرزى (告)، كدام كزينه صحيح است؟

المانى به عرض واحد، درون لايهٔ مرزى زير داريم. نيروى فشار روى ضلع AB. برابر كدام است؟

AB \quad ع عمود بر $\left(\mathrm{p}+\frac{\mathrm{dp}}{r}\right) \mathrm{d} \delta(1$
AB وعمود بر $\left.\mathrm{p}-\frac{\mathrm{dp}}{r}\right) \mathrm{d} \delta(r$
$A^{\prime} B^{\prime}$ و موازی $\left(p+\frac{d p}{r}\right) d \delta(r$
$A^{\prime} B^{\prime}$ و موازی $\left(p-\frac{d p}{r}\right) d \delta(\uparrow$

 نقطهٔ مناسبى براى اين توربين باد است؟

 جريان، حول كداميكـ از شكلهاى زير ايجاد خواهد شد؟
rre جريان دو بعدى (
(او ا) میگَذرد، داراى چچه رابطهاى است؟

$$
\begin{array}{rr}
y=r-e^{1-x}(r & y=e^{x-1} \\
y=1-\log (x) & (r
\end{array}
$$

براى بهدست آوردن درست تعداد تروههاى بىبعد، كزينهٔ صحيح كدام است؟ -YF
Y بهاربردن مجموعه ابعاد MLT بها
٪) بهدست آوردن رتبؤ ماتريس ابعادى \&) هيجكدام

هr - قبل از ساخت يك موشك تصميم گرفتهاايم مدل كوحكى از آن به مقياس

 (r) از اثرات ناشى از تراكمیذيرى هوا مى توان حشمه پوشيد.)
$1(1$
$10(Y$
$100(\%$

در جر جريان با رينولدز بالا، اكر ديسكى موازى جريان را به صورت عمود بر جريان قرار دهيم، نيروى پسا تقريباً

از گَزينههاى زير صحيح است؟

 كدام يكى ا ز گز ينههاى زير صحيح است؟
Y) هر دو با سرعت يكسان سقوط مى كنند.

$$
\begin{aligned}
& \text { (Y كاهش ـ افزايش (Y } \\
& \text { (Y) كاهش ـ كاهش } \\
& \text { 1) افزايش ـ كاهش }
\end{aligned}
$$

 سانتىمتر است. اگر نيروهاى اصطكاكى در ياتاقانها ناپيز باشيا باشند و دبى حجمى آب باشد، سرعت دورانى آبییاش برابر چند راديان بر ثانيه است است؟

11/11(1)
tr,yt (y
HFAFA (H
rrifu (f
 اغتشاش نشان داده شده در شكل، دماى سكون چچند كلوين است؟

40 (1
DFO (T
$99 \circ$ (
$\mathrm{v} \%$ (F

دو مخزن صلب با حجم برابر توسط يك شير به هم متصل شدهاند. مجموعه به صورت كامل عايق شده و در حالــت

 اوليه مخزن Aاست؟
(كاز درون دو مخزن يكسان بوده و مانند كاز ايدئال رفتار مىكند. همحچنين ظرفيت گرمايیى ويثهه را ثابت فرض كنيد.)

$$
\begin{aligned}
& \frac{1}{r}() \\
& \frac{r}{r}(r \\
& \frac{q}{a}(r \\
& \frac{r}{r}(r
\end{aligned}
$$

 اختلاف دماى سيال در طى فرايند به TY (فشار و دماى اتمسفر

$$
\eta_{I I}=1
$$

$$
\eta_{I I}=1-\frac{T_{0} \ln \left(T_{Y} / T_{1}\right)}{\Delta T}(r
$$

$$
\eta_{I I}=1-\frac{\ln \left(T_{Y} / T_{1}\right)}{\Delta T}(r
$$

$$
\eta_{I I}=1-\frac{\ln \left(T_{Y} / T_{1}\right)+T_{0} \Delta T}{\Delta T}(\uparrow
$$

$$
\begin{array}{ll}
\mathrm{Q}_{\mathrm{H}}=900 \mathrm{~kJ} & , \mathrm{~W}=r 00 \mathrm{~kJ}(\\
\mathrm{Q}_{\mathrm{H}}=400 \mathrm{~kJ} & , \mathrm{~W}=100 \mathrm{~kJ}(r \\
\mathrm{Q}_{\mathrm{H}}=\Delta 00 \mathrm{~kJ} & , \mathrm{~W}=100 \mathrm{~kJ}(r \\
\mathrm{Q}_{\mathrm{H}}=\Delta \circ \mathrm{kJ} & , \mathrm{~W}=\Delta \circ \mathrm{kJ}(\uparrow
\end{array}
$$

 (ورايب گرماى ويثه ثابت هستند. همحنين فرض كنيد دماى مرزها در حين انتقال حرارت ثابت اسـت ضمناً دماى مرزها در حين جذب و دفع گرما باهم برابر فرض شوند.)

$$
\begin{aligned}
& r_{v}=\left(\frac{T_{r}}{T_{1}}\right)^{\frac{1}{k-1}} \\
& r_{v}=\left(\frac{T_{r}}{T_{1}}\right)^{\frac{1}{r k-1}}(r \\
& r_{v}=\left(\frac{T_{r}}{T_{1}}\right)^{\frac{1}{r k-r}}(r \\
& r_{v}=\left(r \frac{T_{r}}{T_{1}}\right)^{\frac{1}{k-1}}(\uparrow
\end{aligned}
$$

 شرايط فشار هوا P و دماى آن To است. (برابر با فشار و دماى محيط)، اين محفظه توسط غشايى از سمت ديگًر
 ظرف را اشغال نمايد، برگشتنايذيرى در اين فرايند كدام است؟

To $R \ln \omega$ (
To $R \ln { }^{4}(r$
To $R \ln r(r$
$\left.\mathrm{T}_{\mathrm{o}} \mathrm{R} \ln { }^{r}{ }^{(}\right)$
צץ- مجموعهٔ زير را كه بهصورت كامل عايق حرارتى است در نظر بعَيريد. با بازشدن شير، هوا وارد محفظهٔ سمت راست

باشد، آيا اين فرايند از نظر ترموديناميكى ممكن است؟ $\ln (\uparrow, \Delta)=1, \Delta, \ln (1, \Delta)=0 / \uparrow$

「

 اينصورت دما در نقطهٔ وارونگَى (Inversion Point) كدام است؟ dh = $\mathbf{c}_{\mathbf{p}} \mathbf{d T}+\left[\mathbf{v}-\mathbf{T}\left(\frac{\partial \mathbf{v}}{\partial \mathbf{~}}\right)_{\mathbf{P}}\right] \mathbf{d P}$) راهنمايى

$$
\begin{gathered}
\frac{1}{\alpha}() \\
\frac{1}{\alpha-1}(r \\
\frac{1}{\alpha^{r}}(r
\end{gathered}
$$

$$
\frac{1}{\alpha(\alpha-1)}
$$

$$
\begin{gathered}
\Delta \mathrm{T}=\frac{\mathrm{h}_{\mathrm{fg}}}{\mathrm{~T}_{1} \mathrm{R}^{r}}() \\
\Delta \mathrm{T}=\frac{\mathrm{h}_{\mathrm{fg}}}{\mathrm{R}}(r
\end{gathered}
$$

$$
\begin{aligned}
& \Delta \mathrm{T}=\frac{\mathrm{RT}_{1}^{r} \ln \left(\mathrm{P}_{\mathrm{r}} / \mathrm{P}_{\uparrow}\right)}{\mathrm{h}_{\mathrm{fg}}-\mathrm{T}_{1} \mathrm{R} \ln \left(\mathrm{P}_{\mathrm{r}} / \mathrm{P}_{\uparrow}\right)} \\
& \Delta \mathrm{T}=\frac{\mathrm{h}_{\mathrm{fg}}-\mathrm{T}_{1} \mathrm{R} \ln \left(\mathrm{P}_{\mathrm{r}} / \mathrm{P}_{1}\right)}{\mathrm{RT}_{1}^{r} \ln \left(\mathrm{P}_{\mathrm{r}} / \mathrm{P}_{\uparrow}\right)}
\end{aligned}
$$

 برسد. نسبت

$$
\begin{gathered}
\frac{\mathrm{V}}{\mathrm{~V}_{\mathrm{A}_{1}}} \mathrm{~F}(\mathrm{~T}) \\
\frac{\mathrm{V}}{\mathrm{~V}_{\mathrm{A}_{1}}}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\mathrm{V}}{\mathrm{~V}_{\mathrm{A}_{1}}}(\tau \\
\frac{\mathrm{V}_{\mathrm{A}_{1}}}{\mathrm{~V}} \mathrm{~F}(\mathrm{~T}) \\
\frac{\mathrm{V}_{\mathrm{A}_{1}}}{\mathrm{~V}}(\Gamma
\end{gathered}
$$

يكى گاز ايدئال تك اتمى كه ترازهاى انرثى بدون ديزنرسى هستند در نظر گرفته شود. ترازهاى انرثى مطرح ff.
 $\left(z_{e}^{\prime}=T\left(\frac{d z_{e}}{d T}\right), y=\varepsilon_{e} / k T\right)$

$$
\begin{gathered}
\bar{u}_{\mathrm{e}}=\overline{\mathrm{R}} \mathrm{~T}\left(\frac{\mathrm{ye}^{-\mathrm{y}}}{1+\mathrm{e}^{-\mathrm{y}}}\right) \\
\overline{\mathrm{u}}_{\mathrm{e}}=\overline{\mathrm{R}} \mathrm{~T}\left(\frac{\mathrm{ye}^{-\mathrm{y}}}{1+\mathrm{e}^{\mathrm{y}}}\right)(r \\
\bar{u}_{\mathrm{e}}=\overline{\mathrm{R}} \mathrm{~T}\left(\frac{\mathrm{ye}^{+\mathrm{y}}}{1+\mathrm{e}^{\mathrm{y}}}\right) \\
\overline{\mathrm{u}}_{\mathrm{e}}=\overline{\mathrm{R}} \mathrm{~T}\left(\frac{\mathrm{ye}^{\mathrm{y}}}{1-\mathrm{e}^{\mathrm{y}}}\right)(\uparrow
\end{gathered}
$$

 ترموديناميكى تعداد ذرات صورت معادلهاى كه مقدار x از ان محاسبه مى شود، كدام است؟
(توزيع ذرات را توزيع بيشتر ين احتمال(most probable) و مدل توزيع بولتزمان است.)

$$
\begin{aligned}
& r x^{r}+x+1=0 \\
& r x^{r}+x-1=0(r \\
& r x^{r}+x-1=0 \\
& r x^{r}+x+1=0
\end{aligned}
$$

$$
\left(\mathbf{k}=1, r \wedge \circ g 9 r \times 10^{-r r} \mathbf{J} / \mathrm{K}\right.
$$

$$
\ln w_{m p}=\frac{r 1 r / v q \Delta \times 10^{r r}}{1, r \Lambda 099 r}(1
$$

$$
\ln W_{\mathrm{mp}}=\frac{r 1 r / v 90 \times 10^{r q}}{1, r \wedge \circ 99 r}(r
$$

$$
\ln w_{\mathrm{mp}}=\frac{1, r \wedge 099 r}{r / r, v 9 \Delta \times 10^{-r q}}(r
$$

$$
\ln w_{m p}=\frac{1, r \Lambda \circ 99 r}{r, r, V 90 \times 10^{-r r}}(\varphi
$$

برای يک كاز ايدئال تك اتمى دوبعدى (گاز ايدئال بر روى يك سطح كه در دو جهت امكان حركت وجود دارد)

$$
\text { مولى كدام است؟ (راهنمايى })_{\mathbf{~}}
$$

$$
y_{\mathrm{r}} \overline{\mathrm{R}} \mathrm{~T}
$$

$$
\alpha / \overline{\mathrm{R}} \mathrm{~T}(\mathrm{r}
$$

$$
r / r \overline{\mathrm{R}} \mathrm{~T}(\Gamma
$$

$\overline{\mathrm{R}} \mathrm{T}$ (\uparrow

- در يك مخلوط با kF
(
و f و و و P ا فشار كلى مخلوط
در اينصورت در مدل محلول آرمانى Ideal Solution Model ، كداميك از روابط زير حاكم است؟

$$
\begin{aligned}
& \overline{\mathrm{f}}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}^{\circ}() \\
& \mathrm{f}_{\mathrm{i}}^{\circ}=\mathrm{y}_{\mathrm{i}} \overline{\mathrm{f}}_{\mathrm{i}}(\uparrow \\
& \overline{\mathrm{f}}_{\mathrm{i}}=\mathrm{P} \cdot \mathrm{f}_{\mathrm{i}}^{\circ}(\uparrow \\
& \mathrm{f}_{\mathrm{i}}^{\circ}=\mathrm{P} . \overline{\mathrm{f}}_{\mathrm{i}}(\uparrow
\end{aligned}
$$

 كيسول را به عنوان سيستم ترموديناميكى در نظر بیَير يد. تعداد درجات آزادى اين سيستم (F) برابر كدام است؟
 (فرض كنيد فشار و دماى مخلوط معلوم باشد.)

- (1)
r (r
$r(r$
- (${ }^{\circ}$

